Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$: a new gallium phosphate isotypic with $\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$

Julien Lesage, Anne Guesdon* and Bernard Raveau

Laboratoire CRISMAT-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France
Correspondence e-mail: guesdon@ensicaen.fr

Received 23 December 2004
Accepted 4 March 2005
Online 23 April 2005
Rubidium trigallium bis(triphosphate), $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ has been synthesized by solid-state reaction and studied by singlecrystal X-ray diffraction at room temperature. This compound is the first anhydrous gallium phosphate containing both GaO_{4} tetrahedra (Ga 1) and GaO_{6} octahedra (Ga 2 and Ga 3). The three independent Ga atoms are located on sites with imposed symmetry 2 (Wickoff positions $4 a$ for Ga1 and $4 b$ for Ga 2 and $\mathrm{Ga} 3)$. The GaO_{4} and GaO_{6} polyhedra are connected through the apices to triphosphate groups and form a threedimensionnal host lattice. This framework presents intersecting tunnels running along the [001] and $<110>$ directions, where the Rb^{2+} cations are located on sites with imposed symmetry 2 (Wickoff position $4 a$). The structure also exhibits remarkable features, such as infinite helical columns created by the junction of GaO_{4} and PO_{4} tetrahedra.

Comment

Against a background of synthesizing original mixed frameworks, we have explored the $A_{2} \mathrm{O}-M_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ pseudo-ternary system by solid-state reaction. M has been chosen to be a trivalent metal such as Al or Ga , which can present octahedral, tetrahedral or bipyramidal coordination, and A is a large alkaline cation such as Cs or Rb. Notably, such compounds can have applications as molecular sieves (Cheetham et al., 1999; Davis, 1997). Our previous experiments using the cationic composition 10:30:60 for $A: M: \mathrm{P}$ led to the characterization of several new phases. In particular, for $M=\mathrm{Al}$, two closely related original structures were discovered, namely $\mathrm{CsAl}_{3}-$ $\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ and $\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ (Lesage et al., 2005). The gallium analogue of the caesium aluminium compound has not been synthesized, since experiments produced the pentaphosphate, viz. $\mathrm{CsGa}_{2} \mathrm{P}_{5} \mathrm{O}_{16}$ (Lesage et al., 2004). However, the structure of $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$, which is isotypic with $\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$, is presented here.
The projections of the structure along c (Fig. 1) and [110] show that the Rb cation sits at the intersection of tunnels running along [001] and $<110\rangle$ in the $\left[\mathrm{Ga}_{3} \mathrm{P}_{6} \mathrm{O}_{20}\right]_{\infty}$ threedimensional framework. The latter is built from $\mathrm{P}_{3} \mathrm{O}_{10}$
triphosphate groups, which share their corners with both GaO_{4} tetrahedra and GaO_{6} octahedra. More precisely, one can observe that the connection between triphosphate groups and GaO_{4} tetrahedra forms infinite isolated $\left[\mathrm{GaP}_{6} \mathrm{O}_{20}\right]_{\infty}$ tetrahedral columns (Fig. 2). In fact, such columns are composed of helical $\mathrm{GaP}_{6} \mathrm{O}_{22}$ elements built up of GaO_{4} linked through the apices with two $\mathrm{P}_{3} \mathrm{O}_{10}$ triphosphate groups (Fig. 3). Their junction through the 2_{1} screw axis parallel to c gives rise to two interlaced infinite helical chains of tetrahedra (Fig. 2). The entire framework results from the assembly of these helical tetrahedral columns through the GaO_{6} octahedra (Fig. 1).

The geometry of the $\mathrm{P}_{3} \mathrm{O}_{10}$ group (Table 1) is close to that commonly observed in other triphosphates (AverbuchPouchot \& Durif, 1996); as expected, the average values for PO_{4} tetrahedra are $1.54 \AA$ for $\mathrm{P}-\mathrm{O}$ bonds and 109.3° for $\mathrm{O}-$ $\mathrm{P}-\mathrm{O}$ angles. Moreover, two sets of distances can be distinguished, since the $\mathrm{P}-\mathrm{O}$ bonds corresponding to the two $\mathrm{P}-$ $\mathrm{O}-\mathrm{P}$ bridges of the $\mathrm{P}_{3} \mathrm{O}_{10}$ group are significantly larger

Figure 1
A projection of $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ along c. One triphosphate group is highlighted in bold.

Figure 2
A perspective view of an isolated $\left[\mathrm{GaP}_{6} \mathrm{O}_{20}\right]_{\infty}$ tetrahedral column. One helical $\mathrm{GaP}_{6} \mathrm{O}_{22}$ element is highlighted in bold.

Figure 3
A perspective view of one helical $\mathrm{GaP}_{6} \mathrm{O}_{22}$ element (filled lines) linked to two GaO_{6} octahedra (unfilled lines). For clarity, only one triphosphate group has been labelled. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (vii) $-x,-y, \frac{1}{2}+z$; (viii) $\frac{1}{2}-x, \frac{1}{2}-y$, $\frac{1}{2}+z$.]
[1.591 (3) -1.632 (2) \AA] than the other $\mathrm{P}-\mathrm{O}$ bonds [1.485 (2)$1.540(3) \AA]$. The geometries of GaO_{4} and GaO_{6} polyhedra are rather regular, with $\mathrm{Ga}-\mathrm{O}$ distances of 1.793 (2) and 1.830 (2) \AA for GaO_{4}, and ranging from 1.919 (2) to 1.981 (2) \AA for GaO_{6} (Table 1). Finally, the Rb cation is surrounded by eight O atoms, with distances ranging from 2.9764 (15) to 3.269 (2) \AA. These distances are also in agreement with bond-valence-sum calculations (Brese \& O'Keeffe, 1991), as reported in Table 2, since the Rb, Ga and P cations and O anions have calculated valences close to the theoretical values ($1,3,5$ and 2 , respectively).

The $\mathrm{Rb}-\mathrm{O}$ distances (Table 1) are very similar in the two isotypic structures, since they range from 2.958 (3) to 3.306 (2) \AA for $\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$. However, a significant variation in the cell volume of the two phases is observed [1579.42 (17) \AA^{3} for $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ versus 1516.75 (18) \AA^{3} for $\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$]. This is in agreement with the increase of the ionic radius of the corresponding trivalent element. This is also evidenced by examination of the $\mathrm{Ga}-\mathrm{O}$ distances, which are indeed significantly larger than the $\mathrm{Al}-\mathrm{O}$ distances [1.715 (3)-1.746 (2) \AA in AlO_{4} and 1.847 (3)-1.911 (3) \AA in AlO_{6}].

The triphosphate groups show similar geometries in the two isotypic compounds, with average $\mathrm{P} \cdots \mathrm{P}$ distances of 2.858 and $2.845 \AA$, respectively, and a P . .P...P angle of 126.24 and 126.32°, respectively (Table 3). This geometry is induced by the fact that the $\mathrm{P}_{2} \mathrm{O}_{7}$ group belonging to the triphosphate shares two apices with the same GaO_{6} octahedron in these phases, as discussed by Lesage et al. (2005) for the $A \mathrm{Al}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}(A=\mathrm{Cs}$ or Rb) structures (Fig. 3).
$\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ is the second gallium triphosphate after $\mathrm{Cs}_{2} \mathrm{GaP}_{3} \mathrm{O}_{10}$ (Guesdon et al., 2002) to be synthesized by a solid-state reaction, i.e not containing H atoms. Furthermore, it is noteworthy that it is the first gallium phosphate to be prepared in this way which presents two types of coordination for Ga in the same structure.

Experimental

The single crystal of $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ used for the determination was extracted from a preparation of nominal composition $\mathrm{Rb}_{3} \mathrm{Ga}_{5} \mathrm{P}_{12} \mathrm{O}_{39}$ synthesized in two steps. First, RbNO_{3} (Chempur, 99.9\%), $\mathrm{Ga}_{2} \mathrm{O}_{3}$ (Alfa Aesar, 99.9%) and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (Prolabo Normapur, 99.5\%) were mixed in an agate mortar. This white mixture was placed in a platinum crucible and heated in air at about 770 K for a few hours until the correct weight loss was reached, i.e. when RbNO_{3} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ had decomposed. In a second step, the resulting powder was finely ground in an agate mortar and placed in a silica tube, which was then evacuated and sealed. The silica tube was heated at 1103 K for 20 h before being slowly cooled at a rate of $1 \mathrm{~K} \mathrm{~h}^{-1}$ to 1063 K and then at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$ to 863 K . A white powder containing small colourless crystals was thus obtained. Semiquantitative analysis of a colourless crystal extracted from the preparation was performed with an Oxford 6650 microprobe mounted on a Philips XL30 FEG scanning electron microscope. The cationic composition obtained was in agreement with the expected theoretical value of 10:30:60 for the Rb , Ga and P cations, respectively. Several crystals were then selected optically for testing.

Crystal data

$\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$
$M_{r}=800.5$
Orthorhombic, $\mathrm{C}_{\mathrm{O}} 22_{1}$
$a=10.0017$ (8) \AA
$b=13.0822$ (8) \AA
$c=12.0710$ (4) \AA
$V=1579.42(17) \AA^{3}$
$Z=4$
$D_{x}=3.365 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius CCD area-detector diffractometer
φ and ω scans
Absorption correction: Gaussian (JANA2000; Petříček \& Dušek, 2000)
$T_{\text {min }}=0.703, T_{\text {max }}=0.849$
14620 measured reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.034$
$S=0.90$
5415 reflections
139 parameters
$w=1 /\left[\sigma^{2}(F)+0.0001 F^{2}\right]$

Mo $K \alpha$ radiation
Cell parameters from 14620 reflections
$\theta=6.0-42.0^{\circ}$
$\mu=8.88 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Polyhedron, colourless
$0.08 \times 0.06 \times 0.05 \mathrm{~mm}$

5415 independent reflections
2778 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=42.0^{\circ}$
$h=-18 \rightarrow 18$
$k=-24 \rightarrow 24$
$l=-22 \rightarrow 19$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.36 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.24 \mathrm{e}^{-3}$
Absolute structure: Flack \&
Bernardinelli (1999), with
2364 Friedel pairs
Flack parameter: -0.009 (7)

Table 1
Selected interatomic distances (\AA).

$\mathrm{Rb} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.9764(15)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.516(3)$
$\mathrm{Rb} 1-\mathrm{O} 5$	$3.208(3)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.492(3)$
$\mathrm{Rb} 1-\mathrm{O}{ }^{\text {ii }}$	$3.051(2)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.504(2)$
$\mathrm{Rb} 1-\mathrm{O} 10$	$3.269(2)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.632(2)$
$\mathrm{Ga} 1-\mathrm{O} 1^{\text {iii }}$	$1.793(2)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.591(3)$
$\mathrm{Ga} 1-\mathrm{O} 8$	$1.830(2)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.492(2)$
$\mathrm{Ga} 2-\mathrm{O} 2^{\text {iv }}$	$1.941(2)$	$\mathrm{P} 2-\mathrm{O} 6$	$1.489(2)$
$\mathrm{Ga} 2-\mathrm{O} 5$	$1.981(2)$	$\mathrm{P} 2-\mathrm{O} 7$	$1.593(3)$
$\mathrm{Ga} 2-\mathrm{O} 9$	$1.945(2)$	$\mathrm{P} 3-\mathrm{O} 7$	$1.618(3)$
$\mathrm{Ga} 3-\mathrm{O} 3$	$1.959(2)$	$\mathrm{P} 3-\mathrm{O} 8$	$1.540(3)$
$\mathrm{Ga} 3-\mathrm{O}$	$1.9401(17)$	$\mathrm{P} 3-\mathrm{O} 9$	$1.485(2)$
$\mathrm{Ga} 3-\mathrm{O} 10^{\text {vi }}$	$1.919(2)$	$\mathrm{P} 3-\mathrm{O} 10$	$1.487(2)$

[^0]Table 2
Results of bond-valence-sum calculations for $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$.

	Rb1	Ga1	Ga2	Ga3	P1	P2	P3	$\Sigma(\nu-)$
O1		0.843			1.269			2.11
O2		0.843						
			0.565		1.354			1.92
O3	0.144		0.565					
	0.144			0.539	1.310			1.99
O4				0.539				
O5	0.077		0.507		0.927	1.036		1.96
	0.077		0.507			1.354		1.94
O6				0.567		1.365		1.93
				0.567				
O7						1.030	0.963	1.99
O8	0.118	0.763					1.189	2.07
	0.118	0.763		0.559				1.379
O9			0.559				1.94	
O10	0.065			0.600			1.372	2.04
	0.065			0.600				
$\Sigma(\nu+)$	0.81	3.21	3.26	3.41	4.86	4.78	4.90	

Table 3
Comparison of the geometry ($\left(\AA,{ }^{\circ}\right.$) of the $\mathrm{P}_{3} \mathrm{O}_{10}$ triphosphate groups in $\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$ and $\operatorname{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2}$.

	$\mathrm{RbGa}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2} \dagger$	$\mathrm{RbAl}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{10}\right)_{2} \ddagger$
$\mathrm{P} 1-\mathrm{P} 2$	$2.8541(11)$	$2.8344(11)$
$\mathrm{P} 2-\mathrm{P} 3$	$2.8619(11)$	$2.8556(12)$
$\mathrm{P} 1-\mathrm{P} 2-\mathrm{P} 3$	$126.24(3)$	$126.32(4)$

\dagger This work. \ddagger Lesage et al. (2005).

Three crystals were studied. The structure was determined using the heavy-atom method and successive difference and Fourier syntheses for the first crystal, then starting from the data previously determined for the other two crystals. The existence conditions hkl: $h+k=2 n$ and $00 l: l=2 n$ are consistent with the non-centrosymmetric space group $C 222_{1}$ (No. 20). As a consequence, the compound may adopt two enantiomorphic structures. Structure determinations and refinements showed that one of the crystals studied is a pure enan-
tiomorph, whereas the other two are twinned by inversion. We present here only the results for the pure enantiomorph. The Flack parameter (Flack \& Bernardinelli, 1999) was refined to -0.009 (7). For the other two crystals, the results of which are not presented here, the Flack parameter is close to 0.5 . The harmonic displacement parameters also have significantly higher values in the twinned crystals than in the pure one, with $U_{\text {iso }, \text { eq }} \simeq 0.02 \AA^{2}$ instead of $0.01 \AA^{2}$ for the O atoms.

Data collection: EVALCCD (Duisenberg et al., 2003); cell refinement: EVALCCD; data reduction: JANA2000 (Petříček \& Dušek, 2000); program(s) used to solve structure: JANA2000; program(s) used to refine structure: JANA2000; molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: JANA2000.

The authors thank Drs O. Pérez and S. Marinel for their friendly collaboration. This work was supported by the Région Basse-Normandie and the Ministère de la Recherche.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1050). Services for accessing these data are described at the back of the journal.

References

Averbuch-Pouchot, M. T. \& Durif, A. (1996). Topics in Phosphate Chemistry, p. 177. Singapore: World Scientific.

Brandenburg, K. (2001). DIAMOND. Version. 2.1e. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Cheetham, A. K., Férey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Davis, M. E. (1997). Chem. Eur. J. 3, 1745-1750.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Flack, H. D. \& Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.
Guesdon, A., Daguts, E. \& Raveau, B. (2002). J. Solid State Chem. 167, 258264.

Lesage, J., Guesdon, A. \& Raveau, B. (2004). Solid State Sci. 6, 697-703.
Lesage, J., Guesdon, A. \& Raveau, B. (2005). J. Solid State Chem. 178, 12121220.

Petřiček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.

[^0]: Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $1-x,-y, z+\frac{1}{2}$; (iii) $-x,-y, z-\frac{1}{2}$; (iv)
 $\frac{1}{2}-x, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (vi) $x-\frac{1}{2}, \frac{1}{2}+y, z$.

